two 6α -halogen-4-en-3-one steroid structures [BANDDO: 6α -bromo-4-androstene-3,17-dione (Hazel, Strong, Duax & Osawa, 1977) and FTXPRO: 11β ,17 α ,21-trihydroxy- 6α -fluoro-4-pregnene-3,20-dione (Duax & Norton, 1975)].

The overall geometry of the title molecule agrees well with the gemetry of the mean 4-en-3-one steroid molecule (Griffin, Duax & Weeks, 1984). The *B* and *C* rings have chair and the *D* ring intermediate sofa-half-chair conformations with asymmetry parameters $\Delta C_s^{13} = 10.2$ and $\Delta C_s^{16} = 10.5$ (Duax & Norton, 1975). The *A* ring has an intermediate sofahalf-chair conformation with asymmetry parameters $\Delta C_s^1 = 10.9$ and $\Delta C_2^{1,2} = 15.1$.

The C(16)—C(17)—C(20)—O(20) torsion angle has been observed to be confined to a narrow range -24 to -18° with the average value -21 (2)° in 17α -ester steroids (Duax, Griffin & Rohrer, 1981). This torsion angle is $-23 \cdot 0$ (5)° in the title molecule.

Material for crystallization was provided by Dr F. S. LaBella (Kim, LaBella, Zunza, Zunza & Templeton, 1980). Research supported in part by grant RP.II.10 from the Polish Ministry of National Education (to ZG, PG and ZW) and by PHS Grant No. DK26546 (to WLD).

References

- ALLEN, F. H., KENNARD, O. & TAYLOR, R. (1983). Acc. Chem. Res. 16, 146-153.
- BLESSING, R. H. (1987). Crystallogr. Rev. 1, 3-58.
- DUAX, W. L., GRIFFIN, J. F. & ROHRER, D. C. (1981). J. Am. Chem. Soc. 103, 6705-6712.
- DUAX, W. L. & NORTON, D. A. (1975). Atlas of Steroid Structure, Vol. 1. New York: Plenum.
- GRIFFIN, J. F., DUAX, W. L. & WEEKS, C. M. (1984). Atlas of Steroid Structure, Vol. 2. New York: Plenum.
- HAZEL, J., STRONG, P., DUAX, W. L. & OSAWA, Y. (1977). Cryst. Struct. Commun. 6, 507-510.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- KIM, R. S., LABELLA, F. S., ZUNZA, H., ZUNZA, F. & TEMPLETON, J. F. (1980). Mol. Pharmacol. pp. 395-398.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1991). C47, 1570-1572

Structure du 2,3-Diméthyl-3-(1,2-diméthylimidazol-4-yl)butan-2-ol*

PAR MICHEL P. CROZET

URA CNRS 'Radicaux Libres et Synthèse', Faculté des Sciences et Techniques de St Jérôme, Avenue Escadrille Normandie–Niemen, 13397 Marseille CEDEX 13, France

PATRICE VANELLE

Laboratoire de Chimie Organique, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille CEDEX 5, France

ET ANDRÉ BALDY ET FOUAD RIDOUANE

Laboratoire de Chimie Inorganique Moléculaire, Associé au CNRS, Faculté des Sciences et Techniques de St Jérôme, Avenue Escadrille Normandie–Niemen, 13397 Marseille CEDEX 13, France

(Reçu le 14 novembre 1990, accepté le 9 janvier 1991)

Abstract. 2,3-Dimethyl-3-(1,2-dimethylimidazol-4-yl)butan-2-ol, $C_{11}H_{20}N_2O$, monoclinic, $P2_1/c$, $M_r = 196\cdot29$, $a = 12\cdot53$ (4), $b = 7\cdot38$ (2), $c = 13\cdot09$ (5) Å, $\beta = 95\cdot01$ (1)°, $V = 1205\cdot8$ (2) Å³, Z = 4, F(000) = 432, $D_x = 1\cdot08$ g cm⁻³, Mo $K\alpha = 0.71069$ Å, $\mu =$

* Cette étude a été réalisée au Centre de Cristallochimie de l'Université d'Aix-Marseille 3, France, dirigé par le Docteur Marcel Pierrot. 7.7 cm⁻¹, T = 298 K, R = 0.065 for 1395 reflections with $I > 3\sigma$. The structure of the tertiary alcohol formed in the first example of hydrolysis of a tertiary nitroalkane is shown to be 2,3-dimethyl-3-(1,2dimethylimidazol-4-yl)butan-2-ol.

Partie expérimentale. Les 5-nitroimidazoles représentent une famille de médicaments d'une grande importance dans le traitement de l'amibiase,

© 1991 International Union of Crystallography

N

C(

CÌ C() C()

C(O(

de la trichomonase et des infections dues aux bactéries anaérobies (Nair & Nagarajan, 1983). Au cours de nos études axées sur la compréhension de leurs propriétés biologiques dues à leur activation par réaction de transfert monoélectronique, il a été montré (Crozet, Vanelle, Jentzer & Bertrand, 1989) que l'anion du 2-nitropropane réagissait avec le 1,2-diméthyl-5-nitroimidazole (Emtryl®) pour conduire au dérivé nitré tertiaire (I). Cette même réaction réalisée en milieu aqueux conduit à l'alcool tertiaire (II).

Aucune hydrolyse de nitroalcanes secondaires ou tertiaires n'étant connue même en milieu acide bouillant (Cundall & Locke, 1968) l'hydrolyse de (I) dans l'eau au reflux constitue le premier exemple d'hydrolyse d'un nitroalcane tertiaire en alcool tertiaire.

Cristaux incolores obtenus par évaporation à 293 K d'une solution dans l'acétone. Cristal de dimension $0.3 \times 0.5 \times 0.4$ mm monté sur diffractomètre Enraf-Nonius CAD-4. Mo $K\alpha$ avec monochromateur au graphite. Paramètres de la maille à 293 K obtenus par la méthode des moindres carrés à partir des positions angulaires de 25 réflexions. Mesure des intensités en balayage $\theta/2\theta$, angle de balayage $(0.8 + 0.35 \text{tg}\theta)^\circ$, $\theta_{\text{max}} = 24^\circ$.

Vitesse de balayage adaptée à l'intensité du pic et temps maximum de mesure de 45 s. Trois réflexions de contrôle mesurées toutes les 7200 s pour le contrôle de la stabilité de l'intensité ne montrent

Fig. 1. Numérotation des atomes et structure du composé (II).

Tableau 1. Coordonnées atomiques relatives, facteurs de température isotropes équivalents et écarts-type

$B_{eq} = \frac{1}{3}(\beta_{11}a^2 + \beta_{22}b^2 + \beta_{33}c^2 + \beta_{12}ab\cos\gamma + \beta_{13}ac\cos\beta + \beta_{13}ac^{2}ac^{$						
	x	<i>p</i> ₂₃ <i>0c</i> 0 <i>su)</i> <i>v</i>	<i>z</i>	$B_{ic}(\text{\AA}^2)$		
N(1)	0.4491 (2)	0.2780 (4)	0.4765 (2)	3,68 (6)		
C(1)	0.4826 (3)	0,2214 (5)	0,5721 (3)	3,59 (7)		
N(2)	0,4018 (2)	0,2119 (4)	0,6300 (2)	3,70 (6)		
C(2)	0,3119 (3)	0,2663 (5)	0,5692 (3)	3,49 (7)		
C(3)	0,3405 (3)	0,3071 (5)	0,4738 (3)	3,75 (8)		
C(4)	0,5150 (3)	0,3012 (6)	0,3906 (3)	4,74 (9)		
C(5)	0,5959 (3)	0,1790 (6)	0,6068 (3)	4,9 (1)		
C(6)	0,2048 (3)	0,2789 (6)	0,6125 (3)	4,07 (8)		
C(7)	0,1749 (3)	0,0927 (6)	0,6565 (3)	4,42 (9)		
C(8)	0,2142 (3)	0,4215 (6)	0,7002 (4)	5,7 (1)		
C(9)	0,1208 (3)	0,3413 (7)	0,5281 (4)	6,3 (1)		
C(10)	0,1686 (4)	- 0,0534 (6)	0,5731 (4)	6,0 (1)		
C(11)	0,0703 (3)	0,0961 (7)	0,7078 (4)	6,3 (1)		
O(1)	0,2540 (2)	0,0398 (4)	0,7368 (2)	5,57 (7)		

Tableau 2. Longueurs et angles des liaisons (°) et écarts-type

1.351 (4)	C(2) - C(6)	1,506 (5)
1,375 (4)	C(6) - C(7)	1,551 (6)
1,464 (5)	C(6)-C(8)	1,556 (6)
1,320 (5)	C(6)—C(9)	1,527 (6)
1,485 (5)	C(7) - C(10)	1,533 (6)
1,380 (4)	C(7) - C(11)	1,524 (6)
1,363 (5)	C(7)—O(1)	1,433 (4)
107,4 (3)	C(2)C(6)C(8)	108,0 (3)
126,7 (3)	C(2)C(6)C(9)	109,0 (3)
125,9 (3)	C(7)—C(6)—C(8)	109,3 (3)
110,9 (3)	C(7)—C(6)—C(9)	111,3 (3)
124,0 (3)	C(8)—C(6)—C(9)	109,4 (4)
125,1 (3)	C(6) - C(7) - C(10)	111,0 (3)
106,3 (3)	C(6)C(7)C(11)	113,2 (4)
109,1 (3)	C(6)—C(7)—O(1)	109,9 (3)
120,6 (3)	C(10)—C(7)—C(11)	109,5 (3)
130,3 (3)	C(10) - C(7) - O(1)	108,6 (3)
106,3 (3)	C(11)—C(7)—O(1)	104,3 (3)
109,8 (3)		
	$\begin{array}{c} 1,351 \ (4) \\ 1,375 \ (4) \\ 1,375 \ (4) \\ 1,464 \ (5) \\ 1,320 \ (5) \\ 1,485 \ (5) \\ 1,380 \ (4) \\ 1,363 \ (5) \\ \hline \\ 107,4 \ (3) \\ 126,7 \ (3) \\ 126,7 \ (3) \\ 125,9 \ (3) \\ 125,9 \ (3) \\ 125,1 \ (3) \\ 109,1 \ (3) \\ 120,6 \ (3) \\ 100,3 \ (3) \\ 100,3 \ (3) \\ 100,8 \ (3) \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

variation significative; trois réflexions aucune vérifiées toutes les 600 mesures pour contrôler l'orientation du cristal avec une déviation angulaire $< 0.20^{\circ}$. 1395 réflexions d'intensité $I > 3\sigma(I)$ avec $\sigma(I)$ l'erreur statistique sur la mesure de I a été conservée pour résoudre la structure. -14 < h < 14; 0 < k < 8; 0 < l < 15. Pas de correction pour absorption ou extinction secondaire. Calculs effectués sur DEC-PDP11/44 avec le logiciel SPD (Frenz, 1978). Structure déterminée par les méthodes directes, programme MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980).

L'hydrogène lié à O(1) a été localisé sur les cartes de Fourier différence, les positions des autres atomes d'hydrogène ont été calculées par programme (Hydro). Pour les affinements en matrice complète, tous les atomes sont affectés des coefficients d'agitation thermique anisotrope β_{ij} sauf les atomes d'hydrogène pour lesquels β isotrope a été fixé à 5 Å². $\sum w(\Delta F)^2$ est la fonction minimisée, w = 1; $\sigma^2(F_o) = [\sigma^2(I) + (\rho F_o^2)^2]^{1/2}$ avec $\rho = 0,04$, R = 0,065, wR = 0,062, S = 1, $(\Delta/\sigma)_{max} = 0,12$, $(\Delta\rho)_{max} = 0,3$ e Å⁻³. Facteurs de diffusion atomique tirés de International Tables for X-ray Crystallography (1974, Tome IV).

La Fig. 1 présente le dessin de la molécule avec la numérotation des atomes. Les coordonnées atomiques des atomes différents d'hydrogène figurent dans le Tableau 1. Les distances et angles interatomiques sont présentés dans le Tableau 2.*

La distance entre l'hydrogène H(20) et l'azote N(2) est de 1,541 (3) Å. Cette distance confirme la présence d'une liaison hydrogène intramoléculaire qui avait été détectée par spectroscopie IR (3309,8 cm⁻¹). Littérature associée. La structure de l'histamine sous forme de base libre a été montrée comme étant celle du 5-2-(aminoéthyl)imidazole (Bonnet & Ibers, 1973).

Références

- BONNET, J. J. & IBERS, J. A. (1973). J. Am. Chem. Soc. 95, 4829-4833.
- CROZET, M. P., VANELLE, P., JENTZER, O. & BERTRAND, M. P. (1989). *Heterocycles*, **28**, 849–855.
- CUNDALL, R. B. & LOCKE, A. W. (1968). J. Chem. Soc. B, pp. 98–103.
- FRENZ, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Dans Computing in Crystallography, edité par H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI. Delft Univ. Press.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. de York, Angleterre, et Louvain, Belgique.
- NAIR, M. D. & NAGARAJAN, K. (1983). Dans Progress in Drug Research, edité par E. JÜCKER, Vol. 27, pp. 169–252. Basel: Birkhaüser.

^{*} Les listes des facteurs de structure observés et calculés, des coefficients d'agitation thermique anisotrope et des paramètres des atomes d'hydrogène ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 53906: 8 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.